ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 78253

Тема:   [ Обратный ход ]
Сложность: 4
Классы: 10,11

k человек ехали в автобусе без кондуктора, и у всех них были монеты только достоинством в 10, 15, 20 копеек. Известно, что каждый уплатил за проезд и получил сдачу. Доказать, что наименьшее число монет, которое они могли иметь, равно k + $ \left[\vphantom{\frac{k+3}{4}}\right.$$ {\frac{k+3}{4}}$$ \left.\vphantom{\frac{k+3}{4}}\right]$, где значок [a] означает наибольшее целое число, не превосходящее a. Примечание. Проезд в автобусе стоит 5 копеек.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .