Страница: 1 [Всего задач: 5]
Задача
78580
(#1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Найдите все простые числа вида PP + 1 (P – натуральное), содержащие не более 19 цифр.
Задача
78581
(#2)
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите, что последние цифры чисел nn (n – натуральное) образуют периодическую последовательность.
Задача
78582
(#3)
|
|
Сложность: 4+ Классы: 10,11
|
Дана плоскость P и две точки A и B по разные стороны от неё. Построить сферу, проходящую через эти точки, высекающую из P наименьший круг.
Задача
78583
(#4)
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Дан многоугольник на плоскости, невыпуклый и несамопересекающийся. Д
– множество точек, принадлежащих тем диагоналям многоугольника, которые не
вылезают за его пределы (то есть лежат либо целиком внутри, либо частью внутри,
частью на контуре). Концы этих диагоналей тоже включаются в Д.
Докажите, что любые две точки из Д можно соединить ломаной, целиком
принадлежащей Д.
Задача
78584
(#5)
|
|
Сложность: 4- Классы: 8,9,10,11
|
В каждой клетке квадратной таблицы m×m клеток стоит либо натуральное число, либо нуль. При этом, если на пересечении строки и столбца стоит нуль, то сумма чисел в "кресте", состоящем из этой строки и этого столбца, не меньше m. Докажите, что сумма всех чисел в таблице не меньше чем ½ m².
Страница: 1 [Всего задач: 5]