ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 78667

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 3+
Классы: 11

По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .