Страница:
<< 1 2 3 4
5 >> [Всего задач: 22]
Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?
Можно ли n раз рассадить 2n + 1 человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если а) n = 5; б) n = 10?
|
|
Сложность: 4+ Классы: 10,11
|
Каждая грань выпуклого многогранника – многоугольник с чётным числом
сторон.
Обязательно ли его рёбра можно раскрасить в два цвета так, чтобы у каждой грани было поровну рёбер разных цветов?
|
|
Сложность: 4+ Классы: 10,11
|
Прибор для сравнения чисел logab и logcd (a, b, c, d > 1) работает по правилам: если b > a и d > c, то он переходит к сравнению чисел logab/a и logcd/c
если b < a и d < c, то он переходит к сравнению чисел logdc и logba; если (b − a)(d − c) ≤ 0, то он выдаёт ответ.
а) Покажите, как прибор сравнит числа log2575 и log65260.
б) Докажите, что любые два неравных логарифма он сравнит за конечное число
шагов.
|
|
Сложность: 4+ Классы: 8,9,10
|
Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на
5, и на 6 кучек равной массы?
Страница:
<< 1 2 3 4
5 >> [Всего задач: 22]