Страница:
<< 1 2 [Всего задач: 8]
Задача
30756
(#10.6)
|
|
Сложность: 3+ Классы: 7,8
|
В таблице 3×3 одна из угловых клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.
Задача
88311
(#10.7)
|
|
Сложность: 3+ Классы: 7,8
|
Круг разделён на шесть секторов, в каждом из которых лежит по селёдке. Разрешается за один ход передвинуть любые две селёдки в соседних секторах, двигая их в разные стороны. Можно ли с помощью этой операции собрать все селёдки в одном секторе?
Задача
88312
(#10.8)
|
|
Сложность: 3+ Классы: 7,8,9
|
В ряд выписаны числа 1, 2, 3, ..., 99, 100. Разрешается менять местами два числа, между которыми стоит ровно одно число.
Можно ли получить ряд 100, 99, 98, ..., 2, 1?
Страница:
<< 1 2 [Всего задач: 8]