Страница: 1 [Всего задач: 5]
Задача
97771
(#1)
|
|
Сложность: 3 Классы: 10,11
|
Будем говорить, что две пирамиды соприкасаются гранями, если эти пирамиды не имеют общих внутренних точек и некоторая грань одной пирамиды пересекается с некоторой гранью другой пирамиды по многоугольнику. Можно ли расположить восемь пирамид в пространстве так, чтобы каждые две соприкасались гранями?
Задача
97770
(#2)
|
|
Сложность: 4 Классы: 8,9,10
|
Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну
овцу?
Задача
97773
(#3)
|
|
Сложность: 3 Классы: 8,9,10
|
Доказать, что любое действительное положительное число можно представить в виде суммы девяти чисел, десятичная запись (каждого из) которых состоит из цифр 0 и 7.
Задача
97774
(#4)
|
|
Сложность: 5+ Классы: 9,10,11
|
N друзей одновременно узнали N новостей, причём каждый узнал одну
новость. Они стали звонить друг другу и обмениваться новостями.
Каждый разговор длится 1 час. За один разговор можно передать сколько угодно новостей.
Какое минимальное количество часов необходимо, чтобы все узнали все новости?
Рассмотрите три случая:
а) N = 64,
б) N = 55,
в) N = 100.
Задача
97775
(#5)
|
|
Сложность: 5 Классы: 9,10,11
|
На бесконечной клетчатой бумаге отмечено шесть клеток (см. рисунок).
На некоторых клетках стоят фишки. Положение фишек разрешается преобразовывать
по следующему правилу: если клетки соседняя сверху и соседняя справа от данной фишки обе свободны, то можно поставить в эти клетки по фишке, убрав при этом старую. Ставится цель за некоторое количество таких операций освободить все шесть отмеченных клеток. Можно ли достигнуть этой цели, если
а) в исходной позиции имеются всего 6 фишек, и они стоят на отмеченных клетках;
б) в исходной позиции имеется всего одна фишка, и она стоит в левой нижней отмеченной клетке.
Страница: 1 [Всего задач: 5]