Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 38]
|
|
Сложность: 4 Классы: 8,9,10
|
В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день
соревнований не изменяется.)
Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Докажите, что эти треугольник и шестиугольник имеют общий центр.
Дана фиксированная хорда MN окружности, не являющаяся диаметром. Для каждого диаметра AB этой окружности, не проходящего через точки M и N, рассмотрим точку C, в которой пересекаются прямые AM и BN, и проведём через неё прямую l, перпендикулярную AB.
Докажите, что все прямые l проходят через одну точку.
На основании AB равнобедренного треугольника ABC выбрана
точка D так, что окружность, вписанная в треугольник BCD, имеет
тот же радиус, что и окружность, касающаяся продолжений отрезков CA и CD и отрезка AD (вневписанная окружность треугольника ACD). Докажите, что этот радиус равен одной четверти высоты треугольника ABC, опущенной на его боковую сторону.
|
|
Сложность: 4+ Классы: 9,10,11
|
В колоду сложено n различных карт. Разрешается переложить любое число рядом лежащих карт (не меняя порядок их следования и не переворачивая) в другое место колоды. Требуется несколькими такими операциями переложить все n карт в обратном порядке.
а) Докажите, что при n = 9 это можно сделать за 5 операций;
Докажите, что при n = 52 это
б) можно сделать за 27 операций;
в) нельзя сделать за 17 операций;
г) нельзя сделать за 26 операций.
Страница:
<< 2 3 4 5 6 7
8 >> [Всего задач: 38]