Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3 Классы: 7,8,9
|
Пусть a, b, c – стороны треугольника. Докажите неравенство a³ + b³ + 3abc > c³.
|
|
Сложность: 3+ Классы: 7,8,9
|
Найдите все целые числа x и y, удовлетворяющие уравнению x4 – 2y² = 1.
|
|
Сложность: 3+ Классы: 7,8,9
|
Шеренга новобранцев стояла лицом к сержанту. По команде "налево"
некоторые повернулись налево, некоторые - направо, а остальные - кругом. Всегда
ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось
поровну новобранцев, стоящих к нему лицом?
|
|
Сложность: 4- Классы: 8,9,10
|
В ряд расположили n лампочек и зажгли некоторые из них. Каждую минуту после этого все лампочки, горевшие на прошлой минуте, гаснут, а те негоревшие лампочки, которые на прошлой минуте соседствовали ровно с одной горящей лампочкой, загораются. При каких n можно так зажечь некоторые лампочки в начале, чтобы потом в любой момент нашлась хотя бы одна горящая лампочка?
|
|
Сложность: 4 Классы: 8,9,10
|
Остроугольный треугольник разрезали прямолинейным разрезом на две (не обязательно треугольные) части, затем одну из этих частей – опять на две части, и так далее: на каждом шаге выбирали любую из уже имеющихся частей и разрезали её (по прямой) на две. Через несколько шагов оказалось, что исходный треугольник распался на несколько треугольников. Могут ли все они быть тупоугольными?
Страница: 1
2 >> [Всего задач: 6]