Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Даны n точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно
непараллельных прямых может быть среди них?
Дан выпуклый четырёхугольник
ABMC , в котором
AB=BC ,
BAM = 30
o ,
ACM=
150
o . Докажите, что
AM – биссектриса
угла
BMC .
|
|
Сложность: 4+ Классы: 7,8,9
|
Существует ли конечное слово из букв русского алфавита, в котором нет двух
соседних одинаковых подслов, но таковые появляются при приписывании (как
справа, так и слева) любой буквы русского алфавита.
Комментарий.
Словом мы называем любую
последовательность букв русского алфавита, не обязательно
осмысленную,
подсловом называется любой фрагмент слова.
Например, АБВШГАБ - слово, а АБВ, Ш, ШГАБ - его
подслова.
|
|
Сложность: 4+ Классы: 9,10,11
|
а) Известно, что область определения функции f(x) – отрезок [–1, 1] и f(f(x)) = – x при всех x, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции f(x).
б) Можно ли это сделать, если область определения функции – интервал (–1, 1)? Вся числовая ось?
|
|
Сложность: 5- Классы: 9,10,11
|
Для каждой пары действительных чисел
a и
b рассмотрим последовательность
чисел
pn = [2{
an +
b}]. Любые
k подряд идущих членов этой
последовательности назовем словом. Верно ли, что любой упорядоченный набор из
нулей и единиц длины
k будет словом последовательности, заданной некоторыми
a и
b при
k = 4; при
k = 5?
Примечание: [c] - целая часть, {c} - дробная часть числа c.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]