Страница:
<< 1 2 [Всего задач: 8]
Задача
109955
(#98.4.9.6)
|
|
Сложность: 4 Классы: 7,8,9
|
На концах клетчатой полоски размером
1×101
клеток стоят
две фишки: слева – фишка первого игрока, справа – второго. За ход
разрешается сдвинуть свою фишку в направлении противоположного края
полоски на 1, 2, 3 или 4 клетки. При этом разрешается перепрыгивать
через фишку соперника, но запрещается ставить свою фишку на одну
клетку с ней. Выигрывает тот, кто первым достигнет противоположного
края полоски. Кто выиграет при правильной игре: тот, кто ходит первым,
или его соперник?
Задача
109956
(#98.4.9.7)
|
|
Сложность: 4 Классы: 8,9,10
|
Дан биллиард в форме правильного 1998-угольника A1A2...A1998. Из середины стороны A1A2 выпустили шар, который, отразившись последовательно от сторон A2A3, A3A4, ..., A1998A1 (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.
Задача
109957
(#98.4.9.8)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?
Страница:
<< 1 2 [Всего задач: 8]