Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3 Классы: 7,8,9
|
Пройдя 4/9 длины моста, пешеход заметил, что его догоняет машина, еще не въехавшая на мост. Тогда он повернул назад и встретился с ней у начала моста. Если бы он продолжил свое движение, то машина догнала бы его у конца моста. Найдите отношение скоростей машины и пешехода.
Существуют ли числа такие p и q, что уравнения x² + (p – 1)x + q = 0 и x² + (p + 1)x + q = 0 имеют по два различных корня, а уравнение
x² + px + q = 0 не имеет корней?
Высоты остроугольного треугольника ABC, проведенные из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.
|
|
Сложность: 2+ Классы: 7,8,9
|
В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем?
M – точка пересечения диагоналей трапеции ABCD. На основании BC выбрана такая точка P, что ∠APM = ∠DPM.
Докажите, что расстояние от точки C до прямой AP равно расстоянию от точки B до прямой DP.
Страница: 1
2 >> [Всего задач: 6]