ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 116619  (#10.2.2)

Темы:   [ Цилиндр ]
[ Развертка помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Вокруг цилиндрической колонны высотой 20 метров и диаметра 3 метра обвита узкая лента, которая поднимается от подножия до вершины семью полными витками. Какова длина ленты?

Прислать комментарий     Решение

Задача 116620  (#10.2.3)

Темы:   [ Процессы и операции ]
[ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

На доске записаны числа: 4, 14, 24, ... , 94, 104. Можно ли стереть сначала одно число из записанных, потом стереть ещё два, потом – ещё три, и, наконец, стереть ещё четыре числа так, чтобы после каждого стирания сумма оставшихся на доске чисел делилась на 11?

Прислать комментарий     Решение

Задача 116621  (#10.3.1)

Тема:   [ Тригонометрические уравнения ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Найдите наименьшее положительное значение  x + y,  если  (1 + tg x)(1 + tg y) = 2.

Прислать комментарий     Решение

Задача 116622  (#10.3.2)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Внутри прямоугольного треугольника АВС выбрана произвольная точка Р, из которой опущены перпендикуляры PK и РМ на катеты АС и ВС соответственно. Прямые АР и ВР пересекают катеты в точках A' и B' соответственно. Известно, что  SAPB' : SKPB' = m.  Найдите  SMPA' : SBPA'.

Прислать комментарий     Решение

Задача 116624  (#10.4.1)

Темы:   [ Многочлены (прочее) ]
[ Производная (прочее) ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Существуют ли такие значения a и b, при которых уравнение   х4 – 4х3 + 6х² + aх + b = 0  имеет четыре различных действительных корня?

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .