Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 38]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дана коробка (прямоугольный параллелепипед), по поверхности (но не внутри) которой ползает муравей. Изначально муравей сидит в углу. Верно ли, что среди всех точек поверхности на наибольшем расстоянии от муравья находится противоположный угол? (Расстоянием между двумя точками считаем длину соединяющего их кратчайшего пути по поверхности параллелепипеда.)
Какое наименьшее число клеток надо отметить на доске 15×15 так, чтобы слон с любой клетки доски бил не менее двух отмеченных клеток? (Слон бьёт и ту клетку, где стоит.)
|
|
Сложность: 4- Классы: 8,9,10,11
|
К натуральному числу a > 1 приписали это же число и получили число b, кратное a². Найдите все возможные значения числа b/a².
|
|
Сложность: 4- Классы: 8,9,10,11
|
Два десятизначных числа назовем соседними, если они различаются только одной цифрой в каком-то из разрядов (например, 1234567890 и 1234507890 соседние). Какое наибольшее количество десятизначных чисел можно выписать так, чтобы среди них не было соседних?
|
|
Сложность: 4- Классы: 10,11
|
Известно, что среди членов некоторой арифметической прогрессии a1, a2, a3, a4, ... есть числа
Докажите,что эта прогрессия состоит из целых чисел.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 38]