Страница:
<< 4 5 6 7 8 9 10 [Всего задач: 48]
Задача
66687
(#10.6)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В окружности $\omega$, описанной около треугольника $ABC$, хорда $KL$ проходит через середину $M$ отрезка $AB$ и перпендикулярна ей. Некоторая окружность проходит через точки $L$ и $M$ и пересекает отрезок $CK$ в точках $P$ и $Q$ ($Q$ лежит на отрезке $KP$). Пусть $LQ$ пересекает описанную окружность треугольника $KMQ$ в точке $R$. Докажите, что четырехугольник $APBR$ вписанный.
Задача
66688
(#10.7)
|
|
Сложность: 4+ Классы: 9,10,11
|
Четырехугольник $ABCD$ описан вокруг окружности радиуса $1$. Найдите наибольшее возможное значение величины $\frac1{AC^2}+\frac1{BD^2}$.
Задача
66689
(#10.8)
|
|
Сложность: 5 Классы: 10,11
|
Даны два треугольника $ABC$ и $A'B'C'$. Прямые $AB$ и $A'B'$ пересекаются в
точке $C_1$, а параллельные им прямые, проходящие через $C$ и $C'$,
соответственно, в точке $C_2$. Точки $A_1$, $A_2$, $B_1$, $B_2$ определяются
аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в
одной точке.
Страница:
<< 4 5 6 7 8 9 10 [Всего задач: 48]