Страница: 1 [Всего задач: 1]
|
|
Сложность: 4 Классы: 8,9,10
|
Дан треугольник $ABC$ и окружность $\gamma$ с центром в точке $A$, которая пересекает стороны $AB$ и $AC$. Пусть общая хорда описанной окружности треугольника и окружности $\gamma$ пересекает стороны $AB$ и $AC$ в точках $X$ и $Y$ соответственно. Отрезки $CX$ и $BY$ пересекают $\gamma$ в точках $S$ и $T$ соответственно. Описанные окружности треугольников $ACT$ и $BAS$ пересекаются в точках $A$ и $P$. Докажите, что прямые $CX$, $BY$, и $AP$ пересекаются в одной точке.
Страница: 1 [Всего задач: 1]