ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 66806  (#9.6)

Тема:   [ Многоугольники (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Saghafian M.

Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам?
Прислать комментарий     Решение


Задача 66808  (#9.7)

Темы:   [ Радикальная ось ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4+
Классы: 9,10,11

Автор: Юдин Ф.

Вписанная окружность $\omega$ треугольника $ABC$ касается его сторон $AC$ и $AB$ в точках $E$ и $F$ соответственно. Точки $X,Y$ на $\omega$ таковы, что $\angle BXC=\angle BYC=90^\circ$. Докажите, что прямые $EF$ и $XY$ пересекаются на средней линии треугольника $ABC$.
Прислать комментарий     Решение


Задача 66807  (#9.8)

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9,10,11

В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .