Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 48]
Задача
67116
(#8.7)
|
|
Сложность: 4- Классы: 8,9,10,11
|
На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?
Задача
67117
(#8.8)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.
Задача
67118
(#9.1)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Пусть $BH$ – высота прямоугольного треугольника $ABC$ $(\angle B=90^{\circ})$. Вневписанная окружность треугольника $ABH$, противолежащая вершине $B$,
касается прямой $AB$ в точке $A_{1}$; аналогично определяется точка $C_{1}$. Докажите, что $AC\parallel A_{1}C_{1}$.
Задача
67119
(#9.2)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Окружности $s_1$ и $s_2$ пересекаются в точках $A$ и $B$. Через точку $A$ проводятся всевозможные прямые, вторично пересекающие окружности в точках $P_1$ и $P_2$. Постройте циркулем и линейкой ту прямую, для которой $P_1A\cdot AP_2$ принимает наибольшее значение.
Задача
67120
(#9.3)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Средняя линия, параллельная стороне $AC$ треугольника $ABC$, пересекает его описанную окружность в точках $X$ и $Y$. Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $D$ – середина дуги $AC$, не содержащей точку $B$. На отрезке $DI$ отметили точку $L$ такую, что $DL=BI/2$. Докажите, что из точек $X$ и $Y$ отрезок $IL$ виден под равными углами.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 48]