Страница:
<< 1 2 [Всего задач: 7]
Задача
67269
(#6)
|
|
Сложность: 5 Классы: 8,9,10,11
|
Пусть X – некоторое множество целых чисел, которое можно разбить на
N непересекающихся возрастающих арифметических прогрессий (бесконечных в обе стороны), а меньше чем на N – нельзя. Для любого ли такого X такое разбиение на
N прогрессий единственно, если а) N = 2; б) N = 3?
(Возрастающая арифметическая прогрессия – это последовательность, в которой каждое число больше своего соседа слева на одну и ту же положительную величину.)
Задача
67187
(#7)
|
|
Сложность: 5 Классы: 8,9,10
|
Правильный 100-угольник разрезали на несколько параллелограммов и два треугольника. Докажите, что эти треугольники равны.
Страница:
<< 1 2 [Всего задач: 7]