ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 67288  (#1)

Тема:   [ Монотонность, ограниченность ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Каждая из функций $f(x)$ и $g(x)$ определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?
Прислать комментарий     Решение


Задача 67289  (#2)

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Глебов А.

Петя и Вася по очереди красят рёбра $N$-угольной пирамиды: Петя – в красный цвет, а Вася – в зелёный (ребро нельзя красить дважды). Начинает Петя. Выигрывает Вася, если после того, как все рёбра окрашены, из любой вершины пирамиды в любую другую вершину ведёт ломаная, состоящая из зелёных рёбер. В противном случае выигрывает Петя. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл его соперник?
Прислать комментарий     Решение


Задача 67290  (#3)

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 4-
Классы: 9,10,11

Точка $I$ – центр вписанной окружности треугольника $ABC$, а $T$ – точка касания этой окружности со стороной $AC$. Пусть $P$ и $Q$ – ортоцентры треугольников $BAI$ и $BCI$. Докажите, что точки $T$, $P$, $Q$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 67291  (#4)

Темы:   [ Последовательности (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10,11

Возрастающая последовательность натуральных чисел $a_1 < a_2 < \dots$ такова, что при каждом целом $n > 100$ число $a_n$ равно наименьшему натуральному числу, большему чем $a_{n-1}$ и не делящемуся ни на одно из чисел $a_1, a_2, \dots, a_{n-1}$. Докажите, что в такой последовательности лишь конечное количество составных чисел.
Прислать комментарий     Решение


Задача 67292  (#5)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Полиция задержала 50 человек, из которых 35 – преступники, которые говорят, что захотят, а 15 – свидетели, которые всегда говорят правду. Все задержанные знают, кто преступники. Какое наименьшее число человек достаточно выбрать, чтобы спросив потом у каждого, кто именно преступники, по ответам вычислить хотя бы одного преступника?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .