ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Три велосипедиста ездят в одном направлении по круглому треку длиной 300 метров. Каждый из них движется со своей постоянной скоростью, все скорости различны. Фотограф сможет сделать удачный снимок велосипедистов, если все они окажутся на каком-либо участке трека длиной d метров. При каком наименьшем d фотограф рано или поздно заведомо сможет сделать удачный снимок?

Вниз   Решение


Секретная база окружена прозрачным извилистым забором в форме невыпуклого многоугольника, снаружи – болото. Через болото проложена прямая линия электропередач из 36 столбов, часть из которых стоит снаружи базы, а часть – внутри. (Линия электропередач не проходит через вершины забора.) Шпион обходит базу снаружи вдоль забора так, что забор всё время по правую руку от него. Каждый раз, оказавшись на линии электропередач, он считает, сколько всего столбов находится по левую руку от него (он их все видит). К моменту, когда шпион обошёл весь забор, он насчитал в сумме 2015 столбов. Сколько столбов находится внутри базы?

ВверхВниз   Решение


В некоторой школе каждый школьник знаком с 32 школьницами, а каждая школьница – с 29 школьниками. Кого в школе больше: школьников или школьниц и во сколько раз?

ВверхВниз   Решение


В выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 158]      



Задача 65619

Темы:   [ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Какое наименьшее количество цветов необходимо, чтобы покрасить все вершины, стороны и диагонали выпуклого n-угольника, если должны выполняться два условия:
  1) каждые два отрезка, выходящие из одной вершины должны быть разного цвета;
  2) цвет любой вершины должен отличаться от цвета любого отрезка, выходящего из неё?

Прислать комментарий     Решение

Задача 65956

Темы:   [ Раскраски ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9

Некоторые клетки белого прямоугольника размером 3×7 произвольным образом покрасили в чёрный цвет. Докажите, что обязательно найдутся четыре клетки одного цвета, центры которых являются вершинами некоторого прямоугольника со сторонами, параллельными сторонам исходного прямоугольника.

Прислать комментарий     Решение

Задача 66084

Темы:   [ Раскраски ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Все натуральные числа, бóльшие единицы, раскрасили в два цвета – синий и красный – так, что сумма каждых двух синих (в том числе одинаковых) – синяя, а произведение каждых двух красных (в том числе одинаковых) – красное. Известно, что при раскрашивании были использованы оба цвета и что число 1024 покрасили в синий цвет. Какого цвета при этом могло оказаться число 2017?

Прислать комментарий     Решение

Задача 66699

Темы:   [ Раскраски ]
[ Четность и нечетность ]
[ Обход графов ]
[ Степень вершины ]
Сложность: 4-
Классы: 8,9,10,11

В каждой вершине выпуклого многогранника сходятся три грани. Каждая грань покрашена в красный, жёлтый или синий цвет.
Докажите, что число вершин, в которых сходятся грани трёх разных цветов, чётно.

Прислать комментарий     Решение

Задача 97823

Темы:   [ Раскраски ]
[ Принцип Дирихле (углы и длины) ]
[ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

Дана бесконечная клетчатая бумага со стороной клетки, равной единице. Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от одной клетки до другой (считается путь центра ладьи). В какое наименьшее число красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .