ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет. ![]() ![]() На стороне BC треугольника ABC взята точка D. Окружность S1 касается отрезков BE и EA и описанной окружности, окружность S2 касается отрезков CE и EA и описанной окружности. Пусть I, I1, I2 и r, r1, r2 -- центры и радиусы вписанной окружности и окружностей S1, S2; ![]() ![]() ![]() В сегмент вписываются всевозможные пары пересекающихся окружностей, и для каждой пары через точки их пересечения проводится прямая. Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44). ![]() ![]() ![]() Вероятность того, что купленная лампочка будет работать, равна 0,95. ![]() ![]() ![]() Вася положил некую сумму в рублях в банк под 20% годовых. Петя взял другую сумму в рублях, перевел её в доллары и положил в банк под 10% годовых. За год цена одного доллара в рублях увеличилась на 9,5%. Когда через год Петя перевел свой вклад в рубли, то оказалось, что за год Вася и Петя получили одинаковую прибыль. У кого первоначально была сумма больше – у Васи или у Пети? ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 366]
Найдите все целые решения уравнения 3x – 12y = 7.
Доказать, что число 2 + 4 + 6 + ... + 2n не может быть a) квадратом; б) кубом целого числа.
Доказать, что произведение шести последовательных натуральных чисел не может быть равно 776965920.
У кассира есть только 72-рублевые купюры, а у вас – только 105-рублевые (у обоих в неограниченном количестве).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 366] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |