Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 77]
|
|
Сложность: 4+ Классы: 10,11
|
Дано два тетраэдра A1A2A3A4 и B1B2B3B4. Рассмотрим шесть пар рёбер AiAj и BkBl, где (i, j, k, l) – перестановка чисел (1, 2, 3, 4) (например, A1A2 и B3B4). Известно, что во всех парах, кроме одной, рёбра перпендикулярны. Докажите, что в оставшейся паре рёбра тоже перпендикулярны.
|
|
Сложность: 4+ Классы: 10,11
|
На бесконечном конусе, угол развёртки которого равен
![$ \alpha$](show_document.php?id=1039482)
, взята точка. Из
это точки в обе стороны проводится линия так, что после развёртки она
превращается в отрезки прямых. Определить число её самопересечений.
Рассматриваются ортогональные проекции данного правильного тетраэдра с единичным
ребром на всевозможные плоскости. Какое наибольшее значение может принимать радиус круга,
содержащегося в такой проекции?
|
|
Сложность: 5 Классы: 10,11
|
В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1; A2 – точка пересечения прямой A1I с плоскостью B1C1D1; B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.
|
|
Сложность: 5+ Классы: 10,11
|
Дана треугольная пирамида
ABCD . Сфера
S1 , проходящая через
точки
A ,
B ,
C , пересекает ребра
AD ,
BD ,
CD в точках
K ,
L ,
M соответственно;
сфера
S2 , проходящая через точки
A ,
B ,
D ,
пересекает ребра
AC ,
BC ,
DC в точках
P ,
Q ,
M соответственно.
Оказалось, что
KL|| PQ .
Докажите, что биссектрисы плоских углов
KMQ и
LMP совпадают.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 77]