Страница: 1 [Всего задач: 2]
|
|
Сложность: 5 Классы: 8,9,10
|
Каждая сторона правильного треугольника разбита на n равных отрезков, и
через все точки деления проведены прямые, параллельные сторонам. Данный
треугольник разбился на n² маленьких треугольников-клеток.
Треугольники, расположенные между двумя соседними параллельными прямыми,
образуют полоску.
а) Какое наибольшее число клеток можно отметить, чтобы никакие
две отмеченные клетки не принадлежали одной полоске ни по одному из трёх
направлений, если n = 10?
б) Тот же вопрос для n = 9.
|
|
Сложность: 5 Классы: 10,11
|
В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1; A2 – точка пересечения прямой A1I с плоскостью B1C1D1; B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.
Страница: 1 [Всего задач: 2]