Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 590]
|
|
Сложность: 3+ Классы: 10,11
|
Пусть x, y, z – любые числа из интервала (0, π/2). Докажите неравенство
|
|
Сложность: 3+ Классы: 8,9,10
|
Дано четыре положительных числа a, p, c, k, произведение которых
равно 1. Доказать, что a² + p² + c² + k² + ap + ac + pc + ak + pk + ck ≥ 10.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дано натуральное число $N$. Для того чтобы найти целое число, ближайшее
к $\sqrt{N}$, воспользуемся следующим способом: найдём среди квадратов натуральных чисел число $a^2$, ближайшее к числу $N$; тогда $a$ и будет искомым числом. Обязательно ли этот способ даст правильный ответ?
|
|
Сложность: 3+ Классы: 7,8,9
|
При изготовлении партии из N ≥ 5 монет работник по ошибке изготовил две монеты из другого материала (все монеты выглядят одинаково).
Начальник знает, что таких монет ровно две, что они весят одинаково, но отличаются по весу от остальных. Работник знает, какие это монеты и что они легче остальных. Ему нужно, проведя два взвешивания на чашечных весах без гирь,
убедить начальника в том, что фальшивые монеты легче настоящих, и в том, какие именно монеты фальшивые. Может ли он это сделать?
Каждый катет прямоугольного треугольника увеличили на единицу. Могла ли его гипотенуза увеличиться более, чем на
?
Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 590]