Страница:
<< 110 111 112 113
114 115 116 >> [Всего задач: 606]
|
|
Сложность: 5 Классы: 8,9,10
|
По окружности расставлено 100 натуральных чисел, взаимно простых в совокупности. Разрешается прибавлять к любому числу наибольший общий делитель его соседей. Докажите, что при помощи таких операций можно сделать все числа попарно взаимно простыми.
|
|
Сложность: 5+ Классы: 8,9,10
|
Квадрат 6×6 нужно заполнить 12 плитками, из которых k имеют форму уголка, а остальные 12 – k – прямоугольника. При каких k это возможно?
|
|
Сложность: 6 Классы: 9,10,11
|
Глеб задумал натуральные числа $N$ и $a$, $a < N$.
Число $a$ он написал на доске.
Затем он начал выполнять следующую операцию: делить $N$ с остатком на последнее выписанное на доску число, а полученный остаток от деления также записывать на доску. Когда на доске появилось число $0$, он остановился. Мог ли Глеб изначально выбрать
такие $N$ и $a$, чтобы сумма выписанных чисел была больше $100 N$?
|
|
Сложность: 6 Классы: 9,10,11
|
k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и k ≤ n почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.
|
|
Сложность: 3- Классы: 6,7,8
|
Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?
Страница:
<< 110 111 112 113
114 115 116 >> [Всего задач: 606]