Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 290]
Одна вершина правильного треугольника лежит на окружности, а две другие делят некоторую хорду на три равные части.
Под каким углом видна хорда из центра окружности?
Одна окружность описана около равностороннего треугольника ABC, а вторая касается прямых AB и AC и первой окружности. Найдите отношение радиусов окружностей.
В равносторонний треугольник ABC вписан прямоугольник PQRS
так, что основание прямоугольника RS лежит на стороне BC, а
вершины P и Q соответственно на сторонах AB и AC. В каком
отношении точка Q должна делить сторону AC, чтобы площадь
прямоугольника PQRS составляла
площади треугольника
ABC?
|
|
Сложность: 3+ Классы: 8,9,10
|
Через вершину B правильного треугольника ABC проведена прямая l. Окружность ωa с центром Ia касается стороны BC в точке A1 и прямых l и AC. Окружность ωc с центром Ic касается стороны BA в точке C1 и прямых l и AC. Докажите, что ортоцентр треугольника A1BC1 лежит на прямой IaIc.
Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причём всюду трёхслойный.
Как это могло получиться?
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 290]