Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 328]
|
|
Сложность: 3+ Классы: 8,9,10
|
Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом
увеличении разность между новым и старым значениями числа была бы больше нуля,
но меньше старого значения. Начальное значение числа равно 2. Выигравшим
считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что при любом натуральном n найдётся ненулевой многочлен P(x) с коэффициентами, равными 0, –1, 1, степени не больше 2n, который делится на
(x – 1)n.
[Числа Фибоначчи и треугольник Паскаля]
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите равенство:
(Сумма, стоящая в левой части, может быть интерпретирована, как сумма элементов треугольника Паскаля, стоящих в одной диагонали.)
|
|
Сложность: 4- Классы: 8,9,10
|
Доказать неравенство
>
.
20 команд сыграли круговой турнир по волейболу.
Докажите, что команды можно занумеровать числами от 1 до 20 так, что 1-я команда выиграла у 2-й, 2-я – у 3-й, ..., 19-я – у 20-й.
Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 328]