Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 328]
|
|
Сложность: 3+ Классы: 9,10,11
|
Бессмертная блоха прыгает по целым точкам на числовой прямой, стартуя с точки
0. Длина первого прыжка равна 3, второго – 5, третьего – 9,
и так далее (длина k-го прыжка равна 2k + 1). Направление прыжка (вправо или влево) блоха выбирает самостоятельно. Может ли так случиться, что блоха рано или поздно побывает в каждой натуральной точке (возможно, побывав в некоторых точках больше, чем по разу)?
|
|
Сложность: 3+ Классы: 7,8,9
|
2m-значное число назовём справедливым, если его чётные разряды содержат столько же чётных цифр, сколько и нечётные. Докажите, что в любом (2m+1)-значном числе можно вычеркнуть одну из цифр так, чтобы полученное 2m-значное число было справедливым. Пример для числа 12345 показан на рисунке.
Дано число, имеющее 13 разрядов. Доказать, что одну из его цифр можно
вычеркнуть так, что в полученном числе количество семёрок на чётных местах
будет равно количеству семёрок на нечётных местах.
|
|
Сложность: 3+ Классы: 9,10
|
Дано число, имеющее нечётное число разрядов. Доказать, что одну из его цифр
можно вычеркнуть так, что в полученном числе количество семёрок на чётных
местах будет равно количеству семёрок на нечётных местах.
|
|
Сложность: 3+ Классы: 8,9,10
|
Берутся всевозможные непустые подмножества из множества чисел
1, 2, 3, ..., n. Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 328]