Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 222]
|
|
Сложность: 4 Классы: 5,6,7
|
Компьютеры 1, 2, 3, ..., 100 соединены в кольцо (первый со вторым, второй с третьим, ..., сотый с первым). Хакеры подготовили 100 вирусов, занумеровали их и в различное время в произвольном порядке запускают каждый вирус на компьютер, имеющий тот же номер. Если вирус попадает на незаражённый компьютер, то он заражает его и переходит на следующий в цепи компьютер с большим номером до тех пор, пока не попадёт на уже заражённый компьютер (с компьютера 100 вирус переходит на компьютер 1). Тогда вирус погибает, а этот компьютер восстанавливается. Ни на один компьютер два вируса одновременно не попадают. Сколько компьютеров будет заражено в результате атаки этих 100 вирусов?
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
В ряд стоят $9$ вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика?
![](show_document.php?id=1724422)
Например, если палочки расположены как на рисунке, то жук будет ползти по сплошной линии. Если убрать третью палочку на пути жука, то он поползёт по пунктирной линии.
[Формула для чисел Каталана]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
а) Пусть {a1, a2,..., an} – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов
{a1, a2, ..., an}, {a2, ..., an, a1}, ..., {an, a1, ..., an–1} все частичные суммы (от начала до произвольного элемента) положительны.
б) Выведите отсюда равенства:
где (4n – 2)!!!! = 2·6·10·...(4n – 2) – произведение, в котором участвует каждое четвёртое число.
Определение чисел Каталана Cn смотри в
справочнике.
|
|
Сложность: 4+ Классы: 9,10,11
|
В английском клубе вечером собрались n его членов (n ≥ 3). По традициям клуба каждый принес с собой сок того вида, который он предпочитает, в том количестве, которое он планирует выпить в течение вечера. Согласно правилам клуба, в любой момент любые три его члена могут присесть за столик и выпить сока (каждый – своего) в любом количестве, но обязательно все трое поровну. Докажите, что для того, чтобы все члены могли в течение вечера полностью выпить принесенный с собой сок, необходимо и достаточно, чтобы доля сока, принесенного каждым членом клуба, не превосходила одной трети от общего количества.
|
|
Сложность: 4+ Классы: 10,11
|
На доске можно либо написать две единицы, либо стереть любые два уже написанных одинаковых числа n и написать вместо них числа n + 1 и n – 1. Какое минимальное количество таких операций требуется, чтобы получить число 2005? (Сначала доска была чистой.)
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 222]