Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 222]
|
|
Сложность: 4+ Классы: 8,9,10
|
Существует ли такая последовательность натуральных чисел, чтобы любое
натуральное число 1, 2, 3, ... можно было представить единственным способом
в виде разности двух чисел этой последовательности?
|
|
Сложность: 4+ Классы: 8,9,10
|
На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?
|
|
Сложность: 4+ Классы: 10,11
|
В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.
|
|
Сложность: 4+ Классы: 10,11
|
Для натурального a обозначим через P(a) наибольший простой делитель числа a² + 1.
Докажите, что существует бесконечно много таких троек различных натуральных чисел a, b, c, что P(a) = P(b) = P(c).
|
|
Сложность: 4+ Классы: 8,9,10
|
Дана четвёрка ненулевых чисел
a,
b,
c,
d. Из неё получается новая
ab,
bc,
cd,
da по
следующему правилу: каждое число умножается на следующее, четвёртое — на
первое. Из новой четвёрки по этому же правилу получается третья и т.д.
Доказать, что в полученной последовательности четвёрок никогда не встретится
вновь четверка
a,
b,
c,
d, кроме случая, когда
a =
b =
c =
d = 1.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 222]