Страница:
<< 85 86 87 88
89 90 91 >> [Всего задач: 1547]
Четыре пересекающиеся прямые образуют четыре
треугольника. Докажите, что четыре окружности, описанные
около этих треугольников, имеют одну общую точку.
Параллелограмм
ABCD отличен от ромба. Прямые,
симметричные прямым
AB и
CD относительно диагоналей
AC и
DB соответственно, пересекаются в точке
Q. Докажите,
что
Q — центр поворотной гомотетии, переводящей отрезок
AO в отрезок
OD, где
O — центр параллелограмма.
|
|
Сложность: 5 Классы: 9,10,11
|
Докажите, что при инверсии сохраняется угол между
окружностями (между окружностью и прямой, между прямыми).
Через данную точку проведите окружность, касающуюся двух данных
окружностей (или окружности и прямой).
|
|
Сложность: 5 Классы: 9,10,11
|
С помощью одного циркуля постройте окружность, в которую переходит данная
прямая
AB при инверсии относительно данной окружности
с данным центром
O.
Страница:
<< 85 86 87 88
89 90 91 >> [Всего задач: 1547]