ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 158]      



Задача 57957

Темы:   [ Композиции поворотов ]
[ Признаки и свойства параллелограмма ]
[ Поворот помогает решить задачу ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.
Прислать комментарий     Решение


Задача 98372

Темы:   [ Произвольные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Движения (прочее) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 10,11

Верны ли утверждения:
  а) Если многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  б) Если выпуклый многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  в) Если выпуклый многоугольник можно разбить ломаной на два многоугольника, которые можно перевести друг в друга движением, сохраняющим ориентацию (то есть поворотом или параллельным переносом), то его можно разбить отрезком на два многоугольника, которые можно перевести друг в друга таким же движением.

Прислать комментарий     Решение

Задача 111909

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Ломаные ]
[ Произвольные многоугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 7,8,9,10,11

Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.)

Прислать комментарий     Решение

Задача 116904

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10

Через вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 53477

Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
[ Центральная симметрия помогает решить задачу ]
[ Композиция центральных симметрий ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 4+
Классы: 8,9,10

С помощью циркуля и линейки постройте пятиугольник по серединам его сторон.

Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .