Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 303]
Окружность касается сторон AB и AC треугольника ABC, D и E – точки касания. На окружности взята точка F, отличная от D и E. Из точки F опущены перпендикуляры FG, FH, FK на стороны AD, AE, DE соответственно. Найдите площадь
треугольника GKF, если FK = 6, FH = 9 и ∠BAC = 60°.
Дан остроугольный треугольник ABC; AA1, BB1 – его высоты. Из точки A1 опустили перпендикуляры на прямые AC и AB, а из точки B1 опустили перпендикуляры на прямые BC и BA. Докажите, что основания перпендикуляров образуют равнобокую трапецию.
Из точки
M описанной окружности треугольника
ABC опущены
перпендикуляры
MP и
MQ на прямые
AB и
AC. При каком
положении точки
M длина отрезка
PQ максимальна?
|
|
Сложность: 4 Классы: 8,9,10,11
|
На хорде AC окружности ω выбрали точку B. На отрезках AB и BC как на диаметрах построили окружности ω1 и ω2 с центрами O1 и O2, которые пересекают ω второй раз в точках D и E соответственно. Лучи O1D и O2E пересекаются в точке F. Лучи AD и CE пересекаются в точке G.
Докажите, что прямая FG проходит через середину AC.
|
|
Сложность: 4 Классы: 9,10,11
|
В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.
Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 303]