ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 38]      



Задача 65398

Темы:   [ Тетраэдр (прочее) ]
[ Сфера, вписанная в тетраэдр ]
[ Параллелограмм Вариньона ]
[ Свойства сечений ]
[ Центр масс ]
Сложность: 4
Классы: 10,11

У тетраэдра ABCD сумма площадей двух граней (с общим ребром AB) равна сумме площадей оставшихся граней (с общим ребром CD). Докажите, что середины рёбер BC, AD, AC и BD лежат в одной плоскости, причём эта плоскость содержит центр сферы, вписанной в тетраэдр ABCD.

Прислать комментарий     Решение

Задача 66251

Темы:   [ Тетраэдр (прочее) ]
[ Сфера, вписанная в тетраэдр ]
[ Поворот и винтовое движение ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Касательные к сферам ]
[ Вспомогательные подобные треугольники ]
[ ГМТ в пространстве (прочее) ]
[ Барицентрические координаты ]
[ Средняя линия треугольника ]
[ Неравенство треугольника (прочее) ]
Сложность: 5
Классы: 10,11

В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
  а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
  б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1A2 – точка пересечения прямой A1I с плоскостью B1C1D1B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.

Прислать комментарий     Решение

Задача 116913

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Точка Нагеля. Прямая Нагеля ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Формулы для площади треугольника ]
[ Момент инерции ]
Сложность: 5-
Классы: 9,10

Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Докажите, что  MI = r/3  тогда и только тогда, когда прямая MI перпендикулярна одной из сторон треугольника.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .