Страница:
<< 127 128 129 130
131 132 133 >> [Всего задач: 5981]
Имеется набор натуральных чисел (известно, что чисел не меньше семи), причём сумма каждых семи из них меньше 15, а сумма всех чисел из набора равна 100. Какое наименьшее количество чисел может быть в наборе?
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что нечётное число, являющееся произведением n различных простых сомножителей, можно представить в виде разности квадратов двух натуральных чисел ровно 2n–1 различными способами.
Два пловца одновременно прыгнули с плывущего по реке плота и поплыли в разные стороны: первый – по течению, а второй – против течения. Через пять минут они развернулись и вскоре вновь оказались на плоту. Кто из них вернулся раньше? (Каждый из пловцов плывет с постоянной собственной скоростью.)
Найдите сумму 6+66+666+...+666..6, где в записи последнего числа
присутствуют n шестерок.
|
|
Сложность: 3 Классы: 6,7,8
|
10 человек собрали вместе 46 грибов, причём известно, что нет двух человек, собравших одинаковое число грибов.
Сколько грибов собрал каждый?
Страница:
<< 127 128 129 130
131 132 133 >> [Всего задач: 5981]