Страница:
<< 73 74 75 76
77 78 79 >> [Всего задач: 507]
|
|
Сложность: 4- Классы: 10,11
|
Можно ли разрезать плоскость на многоугольники, каждый из которых переходит
в себя при повороте на 360°/7 вокруг некоторой точки и все стороны которых больше 1 см?
Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что AP + AQ = 1 (A – вершина n-угольника).
Найдите сумму углов, под которыми отрезок PQ виден из всех вершин n-угольника, кроме A.
|
|
Сложность: 4- Классы: 8,9,10
|
В выпуклом шестиугольнике AC1BA1CB1 AB1 = AC1, BC1 = BA1, CA1 = CB1 и ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.
Прямая отсекает от правильного 10-угольника ABCDEFGHIJ со стороной 1 треугольник PAQ, в котором PA + AQ = 1.
Найдите сумму углов, под которыми виден отрезок PQ из вершин B, C, D, E, F, G, H, I, J.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)
Страница:
<< 73 74 75 76
77 78 79 >> [Всего задач: 507]