Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 239]
|
|
Сложность: 4- Классы: 10,11
|
В равностороннем треугольнике ABC на стороне AB взята точка D так, что AD = AB/n.
Докажите,что сумма n – 1 углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей, равна 30°:
а) при n = 3;
б) при произвольном n.
Точки P1, P2, ..., Pn–1 делят сторону BC равностороннего треугольника ABC на n равных частей: BP1 = P1P2 = ... = Pn–lC. Точка M выбрана на стороне AC так, что AM = BP1.
Докажите, что ∠
AP1M + ∠
AP2M + ... + ∠
APn–1M = 30°, если
а)
n = 3;
б)
n – произвольное натуральное число.
Диагональ AC выпуклого четырёхугольника ABCD делится точкой пересечения диагоналей пополам. Известно, что ∠ADB = 2∠CBD. На диагонали BD нашлась точка K, для которой CK = KD + AD. Докажите, что ∠BKC = 2∠ABD.
В треугольниках ABC и A1B1C1 проведены биссектрисы CD и C1D1 соответственно. Известно, что AB = A1B1, CD = C1D1 и ∠ADC = ∠A1D1C1.
Докажите, что треугольники ABC и A1B1C1 равны.
На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что AM = BN = AC. Точка X на луче CA такова, что MX = AB Найдите угол MXN.
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 239]