Страница:
<< 120 121 122 123
124 125 126 >> [Всего задач: 1111]
|
|
Сложность: 4- Классы: 8,9,10
|
Целые числа от 1 до n записаны в строчку. Под ними записаны те же числа в другом порядке. Может ли случиться так, что сумма каждого числа и записанного
под ним есть точный квадрат а) при n = 9, б) при n = 11, в) при n = 1996.
|
|
Сложность: 4- Классы: 9,10
|
В приведённой таблице заполнить все клетки так, чтобы числа в каждом столбце и каждой строке составили геометрическую прогрессию.
|
|
Сложность: 4- Классы: 9,10,11
|
Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.
|
|
Сложность: 4- Классы: 7,8,9
|
Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других?
|
|
Сложность: 4- Классы: 8,9,10
|
Леша поставил в клетки таблицы 22×22 натуральные числа от 1 до 22².
Верно ли, что Олег может выбрать такие две клетки, соседние по стороне или вершине, что сумма чисел, стоящих в этих клетках, делится на 4?
Страница:
<< 120 121 122 123
124 125 126 >> [Всего задач: 1111]