Страница:
<< 9 10 11 12 13 14
15 >> [Всего задач: 75]
|
|
Сложность: 5 Классы: 10,11
|
Можно ли расположить в пространстве 12 прямоугольных параллелепипедов
P1 ,
P2 ,
P12
,
ребра которых параллельны координатным осям
Ox ,
Oy ,
Oz так, чтобы
P2 пересекался (т.е. имел хотя бы одну общую точку)
с каждым из оставшихся, кроме
P1 и
P3 ,
P3 пересекался с каждым из оставшихся, кроме
P2 и
P4 , и т.д.,
P12
пересекался с каждым из оставшихся, кроме
P11
и
P1 ,
P1 пересекался с каждым из оставшихся, кроме
P12
и
P2 ?
(Поверхность параллелепипеда принадлежит ему.)
|
|
Сложность: 6 Классы: 10,11
|
В прямоугольном параллелепипеде проведено сечение, являющееся шестиугольником.
Известно, что этот шестиугольник можно поместить в некоторый
прямоугольник
Π . Докажите, что в прямоугольник
Π можно
поместить одну из граней параллелепипеда.
Можно ли из 13 кирпичей
1×1×2
сложить куб
3×3×3 с дыркой
1×1×1
в центре?
|
|
Сложность: 3 Классы: 10,11
|
Дан прямоугольный параллелепипед
ABCDA1
B1
C1
D1
,
в котором
AB=4
,
AD = AA1
= 14
. Точка
M – середина ребра
CC1
. Найдите площадь сечения параллелепипеда плоскостью,
проходящей через точки
A1
,
D и
M .
|
|
Сложность: 3 Классы: 10,11
|
В прямоугольном параллелепипеде
ABCDA1B1C1D1 четыре числа
– длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с
положительной разностью d, причём AA1 < AB < BC.
Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены
так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней
ABB1A1, ADD1A1,
ABCD, а вторая – граней BCC1B1,
CDD1C1,
A1B1C1D1.
Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми
CD1 и AC1; в) радиус R.
Страница:
<< 9 10 11 12 13 14
15 >> [Всего задач: 75]