ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 378]      



Задача 110538

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Объем помогает решить задачу ]
[ Метод координат в пространстве ]
[ Расстояние от точки до плоскости ]
Сложность: 4
Классы: 10,11

В кубе ABCDABCD₁, ребро которого равно 6, точки M и N ─ середины рёбер AB и BC₁ соответственно, а точка K расположена на ребре DC так, что CK = 2KD. Найдите

1) расстояние от точки N до прямой MK;

2) расстояние между прямыми MN и AK;

3) расстояние от точки A₁ до плоскости треугольника MKN.
Прислать комментарий     Решение


Задача 110539

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Объем помогает решить задачу ]
[ Метод координат в пространстве ]
[ Расстояние от точки до плоскости ]
Сложность: 4
Классы: 10,11

В кубе ABCDABCD₁, ребро которого равно 4, точки E и F ─ середины рёбер AB и BC₁ соответственно, а точка P расположена на ребре CD так, что PD = 3PC. Найдите

1) расстояние от точки F до прямой AP;

2) расстояние между прямыми EF и AP;

3) расстояние от точки A₁ до плоскости треугольника EFP.
Прислать комментарий     Решение


Задача 110568

Темы:   [ Площадь сечения ]
[ Отношение объемов ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD ( S – вершина) AB=3 , высота пирамиды равна 8. Сечения пирамиды двумя параллельными плоскостями, одна из которых проходит через точку A , а другая – через точки B и D , имеют равные площади. В каком отношении делят ребро SC плоскости сечений? Найдите расстояние между плоскостями сечений и объёмы многогранников, на которые пирамида разбивается этими плоскостями.
Прислать комментарий     Решение


Задача 110569

Темы:   [ Площадь сечения ]
[ Отношение объемов ]
Сложность: 4
Классы: 10,11

Ребро SA пирамиды SABC перпендикулярно плоскости ABC , AB=2 , AC=1 , BAC = 120o , SA=3 . Сечения пирамиды двумя параллельными плоскстями, одна из которых проходит через точку C и середину ребра AB , а другая – через точку B , имеют равные площади. В каком отношении делят ребро SA плоскости сечений? Найдите объёмы многогранников, на которые разбивают пирамиду плоскости сечений, а также расстояние между этими плоскостями.
Прислать комментарий     Решение


Задача 110570

Темы:   [ Площадь сечения ]
[ Отношение объемов ]
Сложность: 4
Классы: 10,11

В основании пирамиды SABCD лежит ромб ABCD , ребро SD перпендикулярно плоскости основания, SD=6 , BD=3 , AC=2 . Сечения пирамиды двумя параллельными плоскостями, одна из которых проходит через точку B , а другая – через точки A и C , имеют равные площади. В каком отношении делят ребро SD плоскости сечений? Найдите расстояние между плоскостями сечений и объёмы многогранников, на которые пирамида разбивается этими плоскостями.
Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .