Страница:
<< 133 134 135 136
137 138 139 >> [Всего задач: 694]
|
|
Сложность: 5- Классы: 8,9,10,11
|
В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:
а) по 5 шахматистов;
б) произвольное равное число шахматистов.
|
|
Сложность: 5 Классы: 8,9,10
|
Найдите суммы
а) 1·n + 2(n – 1) + 3(n – 2) + ... + n·1.
б) Sn,k = (1·2·...·k)·(n(n – 1)...(n – k + 1)) + (2·3·...·(k + 1))·((n – 1)(n – 2)...(n – k)) + ... + ((n – k + 1)(n – k + 2)...·n)·(k(k – 1)·...·1).
|
|
Сложность: 5 Классы: 8,9,10,11
|
Числа 1, 2, 3, ..., 101 выписаны в ряд в каком-то порядке.
Докажите, что из них можно вычеркнуть 90 так, что оставшиеся 11 будут расположены по их величине (либо возрастая, либо убывая).
|
|
Сложность: 5+ Классы: 7,8,9
|
Банкир узнал, что среди одинаковых на вид монет одна — фальшивая (более
легкая). Он попросил эксперта определить эту монету с помощью чашечных весов
без гирь, причем потребовал, чтобы каждая монета участвовала во взвешиваниях
не более двух раз. Какое наибольшее число монет может быть у банкира, чтобы
эксперт заведомо смог выделить фальшивую за
n взвешиваний?
Страница:
<< 133 134 135 136
137 138 139 >> [Всего задач: 694]