ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Диагонали прямоугольного параллелепипеда ABCDA1B1C1D1 , вписанного в сферу радиуса R , наклонены к плоскости основания под углом 45o . Найдите площадь сечения этого параллелепипеда плоскостью, которая проходит через диагональ AC1 , параллельна диагонали основания BD и образует с диагональю BD1 угол, равный arcsin ![]() ![]() На отрезке длиной 1 дано n точек. Докажите, что сумма расстояний от некоторой точки отрезка до этих точек не меньше n/2. ![]() ![]() ![]() Постройте прямую, проходящую через данную точку и касающуюся данной окружности. ![]() ![]() ![]() Точка M расположена на отрезке AN, а точка N – на отрезке BM. Известно, что AB = 18 и AM : MN : NB = 1 : 2 : 3. Найдите MN. ![]() ![]() |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 398]
Маляр-хамелеон ходит по клетчатой доске как хромая ладья (на одну клетку по вертикали или горизонтали). Попав в очередную клетку, он либо перекрашивается в её цвет, либо перекрашивает клетку в свой цвет. Белого маляра-хамелеона кладут на чёрную доску размером 8×8 клеток. Сможет ли он раскрасить её в шахматном порядке?
Солдаты построены в две шеренги по n человек, так что каждый солдат из первой шеренги не выше стоящего за ним солдата из второй шеренги. В шеренгах солдат выстроили по росту. Докажите, что после этого каждый солдат из первой шеренги также будет не выше стоящего за ним солдата из второй шеренги.
На контрольной работе учитель дал пять задач и ставил за контрольную оценку, равную количеству решённых задач. Все ученики, кроме Пети, решили одинаковое число задач, а Петя – на одну больше. Первую задачу решили 9 человек, вторую – 7 человек, третью – 5 человек, четвёртую – 3 человека, пятую – один человек. Сколько четвёрок и пятерок было получено на контрольной?
Даны два треугольника. Сумма двух углов первого треугольника равна некоторому углу второго. Сумма другой пары углов первого треугольника также равна некоторому углу второго. Верно ли, что первый треугольник – равнобедренный?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 398] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |