ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Когда из бассейна сливают воду, уровень h воды в нём меняется в зависимости от времени t по закону

h(t)=at2+bt+c,

а в момент t0 окончания слива выполнены равенства h(t0)=h'(t0)=0 . За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое?

Вниз   Решение


В остроугольном треугольнике $ABC$ $H$ – ортоцентр; $A_1$, $B_1$, $C_1$ – точки касания вписанной окружности с $BC$, $CA$, $AB$ соответственно; $E_A$, $E_B$, $E_C$ – середины $AH$, $BH$, $CH$ соответственно; окружность с центром $E_A$, проходящая через $A$, повторно пересекает биссектрису угла $A$ в точке $A_2$; точки $B_2$, $C_2$ определены аналогично. Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 111]      



Задача 64915

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 9,10

Даны точки A, B. Найдите геометрическое место таких точек C, что C, середины отрезков AC, BC и точка пересечения медиан треугольника ABC лежат на одной окружности.

Прислать комментарий     Решение

Задача 65564

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

Окружность с центром I лежит внутри окружности с центром O. Найдите геометрическое место центров описанных окружностей треугольников IAB, где AB – хорда большей окружности, касающаяся меньшей.

Прислать комментарий     Решение

Задача 78232

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 10,11

Найти геометрическое место центров прямоугольников, описанных около данного остроугольного треугольника.
Прислать комментарий     Решение


Задача 108615

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.

Прислать комментарий     Решение

Задача 36997

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4
Классы: 8,9

Дан квадрат ABCD. Найдите геометрическое место точек M таких, что ∠AMB = ∠CMD.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 111]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .