ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 12601]      



Задача 52800

Тема:   [ Неравенство треугольника ]
Сложность: 3
Классы: 8,9

Наименьшее расстояние от данной точки до точек окружности равно a , и наибольшее равно b . Найдите радиус.
Прислать комментарий     Решение


Задача 53321

Тема:   [ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Даны два равнобедренных треугольника с общим основанием. Докажите, что их медианы, проведённые к основанию, лежат на одной прямой.

Прислать комментарий     Решение

Задача 53326

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Точки A, B, C, D лежат на одной прямой. Докажите, что если треугольники ABE1 и ABE2 равны, то треугольники CDE1 и CDE2 тоже равны.

Прислать комментарий     Решение

Задача 53330

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Треугольники ABC и BAD равны, причём точки C и D лежат по разные стороны от прямой AB. Докажите, что:
  а) треугольники CBD и DAC равны;
  б) прямая CD делит отрезок AB пополам.

Прислать комментарий     Решение

Задача 53337

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Докажите равенство треугольников по углу, биссектрисе и стороне, исходящим из вершины этого угла.

Прислать комментарий     Решение

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .