Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 35]
Равнобедренный треугольник ABC с основанием BC повернули
вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Полученный таким образом равнобедренный треугольник A1B1C повернули вокруг точки A1 так, что вершина B1 перешла в точку B2 на прямой BC. При этом вершина C перешла в некоторую точку C2, также лежащую с точкой A по одну сторону от прямой BC. Докажите, что C2B2 || AC.
Существует ли фигура, не имеющая ни осей симметрии, ни центров симметрии, но переходящая в себя при некотором повороте?
а) На окружности фиксированы точки
A и
B, а
точки
A1 и
B1 движутся по той же окружности так, что величина
дуги
A1B1 остается постоянной;
M — точка пересечения
прямых
AA1 и
BB1. Найдите ГМТ
M.
б) В окружность вписаны треугольники
ABC и
A1B1C1,
причем треугольник
ABC неподвижен, а треугольник
A1B1C1
вращается. Докажите, что прямые
AA1,
BB1 и
CC1 пересекаются
в одной точке не более чем при одном положении треугольника
A1B1C1.
На плоскости даны 2n прямых, окружность и точка K внутри
неё. С помощью циркуля и линейки впишите в окружность (2n + 1)-угольник,
одна сторона которого проходит через точку K, а остальные стороны
параллельны данным прямым.
|
|
Сложность: 3+ Классы: 9,10
|
Существует ли выпуклая фигура, не имеющая осей симметрии, но переходящая в себя при некотором повороте?
Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 35]