Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 122]
Продолжения сторон KN и LM выпуклого четырёхугольника KLMN
пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN.
Найдите сторону KL, если KQ = 12, NQ = 8, а площадь четырёхугольника KLMN равна площади треугольника LQM.
Продолжения сторон KN и LM выпуклого четырёхугольника KLMN
пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN.
Найдите сторону MN, если KQ = 6, NQ = 4, а площади треугольника LQM и четырёхугольника KLMN равны.
В треугольнике ABC точка M делит сторону BC пополам, а точка K лежит на стороне AC, причём отрезок AK в 4 раза меньше стороны AC. Отрезки AM и BK пересекаются в точке O. Известно, что AM = 5, BK = 10. Найдите MK, если угол AOB равен 135°.
В треугольнике KLM взяты точка A на стороне LM, а точка
B – на стороне KM. Отрезки KA и LB пересекаются в точке O, LA : AM = 3 : 4, KO : OA = 3 : 2.
Найдите LO : OB.
В четырёхугольнике ABCD на сторонах BC и AD взяты точки R и T соответственно. Отрезки BT и AR пересекаются в точке P, отрезки CT и DR – в точке S. Оказалось, что PRST – параллелограмм. Докажите, что AB || CD.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 122]