ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 107751

Темы:   [ Геометрия на клетчатой бумаге ]
[ Свойства симметрии и центра симметрии ]
[ Обратный ход ]
Сложность: 4-
Классы: 7,8,9

Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера.
Прислать комментарий     Решение


Задача 77897

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Свойства симметрии и центра симметрии ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Выпуклые многоугольники ]
[ Классические неравенства (прочее) ]
Сложность: 4+
Классы: 8,9,10

В данный треугольник поместить центрально-симметричный многоугольник наибольшей площади.

Прислать комментарий     Решение

Задача 78215

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Свойства симметрии и центра симметрии ]
[ Доказательство от противного ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Малые шевеления ]
[ Выпуклые многоугольники ]
Сложность: 4+
Классы: 9,10,11

Дан выпуклый многоугольник и точка O внутри него. Любая прямая, проходящая через точку O, делит площадь многоугольника пополам. Доказать, что многоугольник центрально-симметричный и O — центр симметрии.
Прислать комментарий     Решение


Задача 78573

Темы:   [ Свойства симметрий и осей симметрии ]
[ Свойства симметрии и центра симметрии ]
[ Малые шевеления ]
Сложность: 4+
Классы: 8,9,10

Дан биллиард прямоугольной формы. В его углах имеются лузы, попадая в которые шарик останавливается. Шарик выпускают из одного угла бильярда под углом 45o к стороне. В какой-то момент он попал в середину некоторой стороны. Доказать, что в середине противоположной стороны он побывать не мог.
Прислать комментарий     Решение


Задача 58140

Темы:   [ Сумма Минковского ]
[ Свойства симметрии и центра симметрии ]
Сложность: 5
Классы: 9,10

Докажите, что выпуклый многоугольник имеет центр симметрии тогда и только тогда, когда его можно представить в виде суммы нескольких отрезков.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .