Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 86]
Пусть p – полупериметр остроугольного треугольника ABC,
q – полупериметр треугольника, образованного основаниями его высот.
Докажите, что p : q = R : r, где R и r – радиусы описанной и вписанной окружностей треугольника ABC.
|
|
Сложность: 3+ Классы: 9,10,11
|
B некоторой трапеции сумма длин боковой стороны и диагонали равна сумме длин
другой боковой стороны и другой диагонали.
Докажите, что трапеция равнобокая.
|
|
Сложность: 4- Классы: 9,10,11
|
Точка
D на стороне
BC треугольника
ABC такова,
что радиусы вписанных окружностей треугольников
ABD и
ACD равны.
Докажите, что радиусы окружностей, вневписанных в треугольники
ABD и
ACD , касающихся
соответственно отрезков
BD и
CD , также равны.
В треугольнике ABC с периметром 2p острый угол BAC
равен . Окружность с центром в точке O касается стороны BC и
продолжения сторон AB и AC в точках K и L соответственно. Точка D
лежит внутри отрезка AK, AD = a. Найдите площадь треугольника DOK.
|
|
Сложность: 4 Классы: 9,10,11
|
а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.
б) Докажите аналогичное утверждение для любого описанного многоугольника.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 86]