Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 298]
|
|
Сложность: 5- Классы: 9,10,11
|
На плоскости дано бесконечное множество точек
S , при этом
в любом квадрате
1×1
лежит конечное число точек из множества
S .
Докажите, что найдутся две разные точки
A и
B из
S
такие, что для любой другой точки
X из
S выполняются неравенства:
|XA|,|XB| 0,999|AB|.
|
|
Сложность: 5- Классы: 9,10,11
|
На плоскости даны
n>1
точек. Двое по очереди
соединяют еще не соединенную пару точек вектором одного из двух возможных
направлений. Если после очередного хода какого-то игрока сумма всех
нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен,
а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?
На сторонах
AB,
BC,
CD и
DA выпуклого четырехугольника
ABCD
взяты точки
K,
L,
M и
N соответственно, причем
AK :
KB =
DM :
MC =
и
BL :
LC =
AN :
ND =
. Пусть
P —
точка пересечения отрезков
KM и
LN. Докажите, что
NP :
PL =
и
KP :
PM =
.
Найдите внутри треугольника
ABC точку
O, обладающую следующим
свойством: для любой прямой, проходящей через
O и пересекающей
сторону
AB в точке
K и сторону
BC в точке
L, выполнено равенство
p +
q = 1, где
p и
q — данные положительные
числа.
|
|
Сложность: 5 Классы: 9,10,11
|
Три мухи равной массы ползают по сторонам
треугольника так, что их центр масс остается на месте.
Докажите, что он совпадает с точкой пересечения медиан
треугольника
ABC, если известно, что одна муха проползла
по всей границе треугольника.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 298]