Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 298]
|
|
Сложность: 4+ Классы: 10,11
|
На плоскости даны n (n > 2) точек, никакие три из которых не лежат на одной прямой. Сколькими различными способами это множество точек можно разбить на два непустых подмножества так, чтобы выпуклые оболочки этих подмножеств не пересекались?
|
|
Сложность: 4+ Классы: 10,11
|
Вася нарисовал на плоскости несколько окружностей и провёл всевозможные
общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?
|
|
Сложность: 4+ Классы: 8,9,10
|
n отрезков
A1 B1 ,
A2 B2 ,
... ,
An Bn (рис. 5) расположены
на плоскости так, что каждый из них начинается на одной из двух данных
прямых, оканчивается на другой прямой, и проходит через точку
G (не
лежащую на данных прямых) — центр тяжести единичных масс, помещенных
в точках
A1 ,
A2 ,
... ,
An . Докажите, что
++...+=n.
|
|
Сложность: 4+ Классы: 8,9,10
|
На прямой выбрано 100 множеств
A1, A2, .. , A100
, каждое из которых является объединением 100
попарно непересекающихся отрезков.
Докажите, что пересечение множеств
A1, A2, .. , A100
является объединением не более 9901 попарно непересекающихся отрезков
(точка также считается отрезком).
|
|
Сложность: 4+ Классы: 10,11
|
В пространстве даны
n точек общего положения (никакие три не лежат
на одной прямой, никакие четыре не лежат в одной плоскости).
Через каждые три из них проведена плоскость. Докажите, что какие бы
n-3
точки в пространстве ни взять, найдется плоскость из проведенных,
не содержащая ни одной из этих
n-3
точек.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 298]